Vanishing Theorems for Toric Polyhedra

نویسنده

  • OSAMU FUJINO
چکیده

A toric polyhedron is a reduced closed subscheme of a toric variety that are partial unions of the orbits of the torus action. We prove vanishing theorems for toric polyhedra. We also give a proof of the E1-degeneration of Hodge to de Rham type spectral sequence for toric polyhedra in any characteristic. Finally, we give a very powerful extension theorem for ample line bundles.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Generalization of Danilov’s Vanishing Theorem

We treat a generalization of Danilov’s vanishing theorem on toric polyhedra. A toric polyhedron is a reduced closed subscheme of a toric variety that are partial unions of the orbits of the torus action. We also give a proof of the E1-degeneration of Hodge to de Rham type spectral sequence for toric polyhedra in any characteristic.

متن کامل

Multiplication Maps and Vanishing Theorems for Toric Varieties

We use multiplication maps to give a characteristicfree approach to vanishing theorems on toric varieties. Our approach is very elementary but is enough powerful to prove vanishing theorems.

متن کامل

Elliptic Genera, Torus Orbifolds and Multi-fans; Ii

This article is a continuation of [HM2]. Elliptic genera for manifolds introduced by Ochanine and other people has a remarkable feature called rigidity. If the circle group acts non-trivially on a closed almost complex (or more generally stably almost complex) manifold whose first Chern class is divisible by a positive integer N greater than 1, then its equivariant elliptic genus of level N is ...

متن کامل

Intersection complexes of fans and toric varieties

In [GM2], Goresky and MacPherson defined and constructed intersection complexes for topological pseudomanifolds. The complexes are defined in the derived category of sheaves of modules over a constant ring sheaf. Since analytic spaces are of this category, algebraic varieties defined over C have intersection complexes. The intersection complex of a given variety has a variation depending on a s...

متن کامل

The Polyhedral Hodge Number H 2;1 and Vanishing of Obstructions

We prove a vanishing theorem for the Hodge number h 2;1 of projective toric varieties provided by a certain class of polytopes. We explain how this Hodge number also gives information about the deformation theory of the toric Gorenstein singularity derived from the same polytope. In particular, the vanishing theorem for h 2;1 implies that these deformations are unobstructed.

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2008